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(Co)homology Theory

Manifolds: de Rham, singular and Cech cohomology.

Assembling local data to extract global information.

Group homology, Lie algebra homology
and their relation with Hopf cyclic cohomology.
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Cyclic cohomology

Cyclic cohomology (of algebras) was discovered by Alain Connes no
later than 1981.

One of Connes main motivations to introduce cyclic cohomology
theory came from index theory on foliated spaces.
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Cocycle

cyclic cocycle = cohomology class

cyclic cocycles have:
topological information
algebraic information
geometric information
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Cyclic Cocycle For Algebras

Definition

A = algebra.

cyclic n-cocycle
ϕ : A⊗ · · · ⊗ A −→ C

bϕ = 0, λϕ = ϕ

(λϕ)(a0, · · · , an) = (−1)nϕ(an, a0, · · · , an−1).

(bϕ)(a0, · · · , an) =∑
i=0(−1)

iϕ(a0, · · · , aiai+1 · · · , an) + (−1)n+1ϕ(ana0, a1, · · · , an−1)
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Example, Even cocycles= Trace Maps

A = Mn(C).

cyclic cocycle
ϕ2n : A⊗(2n+1) −→ C

ϕ2n(a0, · · · , a2n) = Tr(a0a1 · · · a2n)
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Example: Cyclic Cocycle

M = closed (i.e. compact without boundary), smooth, oriented,
n-manifold.

A = C∞(M): smooth complex valued functions.

f0, · · · , fn ∈ A.

ϕ : A⊗ · · · ⊗ A −→ C

ϕ(f0, · · · , fn) =

∫

M

f0df1 ∧ · · · ∧ dfn
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Previous Example

Properties of ϕ:

ϕ continuous.

ϕ Hochschild cocycle.

ϕ cyclic
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Continuity of ϕ

ϕ continuous in Frechet space topology of A:

fn −→ f ⇐⇒ ∂αfn −→ ∂αf

Uniformly in a coordinate system.
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ϕ is Hochschild Cocycle

bϕ = 0

(bϕ)(f0, · · · , fn+1) =
∑

(−1)i
∫

M

f0df1 · · · d(fi fi+1) · · · dfn+1+

(−1)n+1

∫

M

fn+1f0df1 · · · dfn =

0.

Leibnitz rule, d(fg) = f ′g + fg ′ .

df ∧ dg = −dg ∧ df .

Mohammad Hassanzadeh (University of New Brunswick )Cyclic (co)homology August 2012, IPM, Tehran 10 / 33



Cyclicity of ϕ

ϕ is cyclic.

ϕ(fn, f0, · · · , fn−1) = (−1)nϕ(f0, · · · , fn)
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Cyclicity of ϕ

ϕ is cyclic.

ϕ(fn, f0, · · · , fn−1) = (−1)nϕ(f0, · · · , fn)

Since
∫

M

(fndf0 · · · dfn−1 − (−1)nf0df1 · · · dfn) =

∫

M

d(fnf0df1 · · · dfn−1).

Stokes formula ∫

M

dω = 0

ω = (n − 1)-form.
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Example

cyclic cocycle  algebraic information

Mohammad Hassanzadeh (University of New Brunswick )Cyclic (co)homology August 2012, IPM, Tehran 12 / 33



0-Cocycles = Trace Maps

A = Any algebra.

All 0-cocycles:
ϕ : A −→ C

ϕ(ab) = ϕ(ba)

ϕ = Trace
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Cyclic 1-Cocycle

All Cyclic 1-Cocycles:
ϕ : A⊗ A −→ C

Satisfying following two conditions,

ϕ(ab, c) − ϕ(a, bc) + ϕ(ca, b) = 0

ϕ(b, a) = −ϕ(a, b)
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Example

cyclic cocycle  topological information
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Winding Number And Cyclic 1-Cocycles

A = C∞(S1).

ϕ(f0, f1) =
1

2πi

∫

S1

f0df1

ϕ is 1-cyclic cocycle. (Already Shown)

f invertible:

ϕ(f −1, f ) =
1

2πi

∫

S1

f −1df = W (f , 0)

Winding Number
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Generalization Of Previous Example

δ : A −→ A derivation; δ(ab) = δ(a)b + aδ(b).

τ : A −→ C invariant trace:

τ(ab) = τ(ba), τ(δ(a)) = 0
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Generalization Of Previous Example

δ : A −→ A derivation; δ(ab) = δ(a)b + aδ(b).

τ : A −→ C invariant trace:

τ(ab) = τ(ba), τ(δ(a)) = 0

cyclic 1-cocycle
ϕ(a0, a1) = τ(a0δ(a1))

Generalizes

ϕ(f0, f1) =

∫

S1

f0df1

A = C∞(S1), δ = d , τ =
∫
.
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Cyclic 2-cocycles Of Previous Example

δ1, δ2 derivations
τ -invariant
δ1δ2 = δ2δ1

cyclic 2-cocycle

ϕ(a0, a1, a2) = τ(a0(δ1(a1)δ1(a1)− δ2(a1)δ1(a2))
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Application, Noncommutative Torus

A = Aθ = noncommutative torus.
τ = standard trace.

δ1(U) = U, δ1(V ) = 0, δ2(U) = 0, δ2(V ) = V
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Example

A = C∞(M).

V ⊆ M = closed p-dimensional oriented submanifold.

ϕ(f0, · · · , fp) =

∫

V

f0df1 · · · dfp

ϕ is a cyclic p-cocycle.
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More Examples: de Rham Homology

A p-dimensional current C on M is a continuous map

Φ : ΩpM −→ C

Cp(M) = all p-currents on M
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More Examples: de Rham Homology

A p-dimensional current C on M is a continuous map

Φ : ΩpM −→ C

Cp(M) = all p-currents on M

· · ·
d

−−−−→ C 1(M)
d

−−−−→ C 0(M)

dΦ(ω) = Φ(dω)

d2 = 0.

HdR
∗(M) = de Rham homology
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De Rham homology and cyclic cohomology

A = C∞(M).

Φ is p-dimensional current on M.

The (p + 1)-linear functional

ϕΦ(f0, · · · , fp) = Φ(f0df1 · · · dfp)

ϕΦ Hochschild cocycle.

Φ closed  ϕΦ cycllic cocycle.
Closed: Φ(dω) = 0, ω ∈ Ωp−1(M).

{ closed de Rham p-currents on M} {cyclic p-cocycles on C∞(M)}
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Duality: De Rham homology and cyclic homology

{ closed de Rham p-currents on M} ←֓ {cyclic p-cocycles on C∞(M)}

Exercise!

Theorem

de Rham homology! cyclic cohomology C∞(M)
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Topological cyclic homology(Connes-1985)

A = C∞(M)

Noncommutative Torus

Other computations of cyclic cohomology.
(Khalkhali-Rangipour , Kustermans-Rognes-Tuset and
Hadfield-Krahmer)
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Connes cyclic modules(1983)

Connes defined the notion of a cyclic object in an abelian category
and its cyclic cohomology.

conceptualizing and generalizing cyclic cohomology far beyond its
original inception.
Motivation: cyclic cohomology of algebras as a derived functor.
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Cosimplicial Module

Definition

A cosimplicial module (Cn, δni , s
n
i ), where, C

n, n ≥ 0 k-modules with
k-module maps δni : Cn −→ Cn+1 cofaces, sni : Cn −→ Cn−1

codegeneracies,
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Cosimplicial Module

Definition

A cosimplicial module (Cn, δni , s
n
i ), where, C

n, n ≥ 0 k-modules with
k-module maps δni : Cn −→ Cn+1 cofaces, sni : Cn −→ Cn−1

codegeneracies,

δnj δ
n−1
i = δni δ

n−1
j−1 if i < j ,

snj s
n+1
i = sni s

n+1
j+1 if i ≤ j ,

snj δ
n+1
i =





δni s
n−1
j−1 if i < j

id if i = j or i = j + 1

δni−1s
n−1
j if i > j + 1.

(0.1)
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(Co)cyclic Module

Definition

A cocyclic module (Cn, δni , s
n
i , τn), where (Cn, δni , s

n
i ) is cosimplicial

module with τn : Cn −→ Cn, called cocyclic map
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(Co)cyclic Module

Definition

A cocyclic module (Cn, δni , s
n
i , τn), where (Cn, δni , s

n
i ) is cosimplicial

module with τn : Cn −→ Cn, called cocyclic map

τnδ
n
i = δni−1τn−1 1 ≤ i ≤ n

τnδ
n
0 = δnn

τns
n
i = sni−1τn+1 1 ≤ i ≤ n

τns
n
0 = snn τ

2
n+1 (0.2)

τn+1
n = id.
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Example, A Cocylic Module for Unital Algebras

Let Cn(A) = Homk(A
⊗(n+1), k).

δiϕ(a0 ⊗ ...⊗ an) =

{
ϕ(a0 ⊗ ...⊗ aiai+1 ⊗ ...⊗ an) 0 ≤ i < n

ϕ(ana0 ⊗ a1 ⊗ ...⊗ an−1) i = n

σiϕ(a0 ⊗ ...⊗ an) = ϕ(a0 ⊗ ...⊗ ai ⊗ 1⊗ ai+1 ⊗ ...⊗ an), 0 ≤ i ≤ n

τnϕ(a0 ⊗ ...⊗ an) = ϕ(an ⊗ a0 ⊗ ...⊗ an−1).
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Hochschild Cohomology of a Cocyclic Module,

HH
∗(C )

Definition

C = (Cn, δni , s
n
i ) = Cosimplicial module in a abelian category. The

Hochschild cohomology,HH∗(C )
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Hochschild Cohomology of a Cocyclic Module,

HH
∗(C )

Definition

C = (Cn, δni , s
n
i ) = Cosimplicial module in a abelian category. The

Hochschild cohomology,HH∗(C )

C 0 b
−−−−→ C 1 b

−−−−→ C 2 b
−−−−→ C 3 . . . ,
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Hochschild Cohomology of a Cocyclic Module,

HH
∗(C )

Definition

C = (Cn, δni , s
n
i ) = Cosimplicial module in a abelian category. The

Hochschild cohomology,HH∗(C )

C 0 b
−−−−→ C 1 b

−−−−→ C 2 b
−−−−→ C 3 . . . ,

where b : Cn−1 −→ Cn is defined by

b =
n∑

i=0

(−1)i δni .

b2 = 0

H∗(C , b) = HH∗(C ) = Hochschild cohomology of C .
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Cyclic Cohomology of a Cocyclic Module, HC ∗(C )

C = (Cn, δni , s
n
i , τn) = Cocyclic module in abelian category,
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Cyclic Cohomology of a Cocyclic Module, HC ∗(C )

C = (Cn, δni , s
n
i , τn) = Cocyclic module in abelian category,

(b,B)-bicomplex B∗∗(C ):
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Cyclic Cohomology of a Cocyclic Module, HC ∗(C )

C = (Cn, δni , s
n
i , τn) = Cocyclic module in abelian category,

(b,B)-bicomplex B∗∗(C ):

...
...

...

C 2 B
−−−−→ C 1 B

−−−−→ C 0

b

x b

x

C 1 B
−−−−→ C 0

b

x

C 0
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where
B = Ns(1− λ).
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where
B = Ns(1− λ).

where
λn = (−1)nτn,

N = 1 + λ+ λ2 + ...+ λn.
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where
B = Ns(1− λ).

where
λn = (−1)nτn,

N = 1 + λ+ λ2 + ...+ λn.

and
s = snnτn+1 : C

n+1 → Cn.
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where
B = Ns(1− λ).

where
λn = (−1)nτn,

N = 1 + λ+ λ2 + ...+ λn.

and
s = snnτn+1 : C

n+1 → Cn.

HCn(C ) := Hn(TotB∗∗(C )).
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Periodic Cyclic Cohomology of a Cocyclic Module,

HP
∗(C )

The bicomplex, B̂∗∗(C )

...
...

...
...

...

· · ·C 4 B
−−−−→ C 3 B

−−−−→ C 2 B
−−−−→ C 1 B

−−−−→ C 0

b

x b

x b

x b

x

· · ·C 3 B
−−−−→ C 2 B

−−−−→ C 1 B
−−−−→ C 0

b

x b

x b

x

· · ·C 2 B
−−−−→ C 1 B

−−−−→ C 0

b

x b

x

· · ·C 1 B
−−−−→ C 0

b

x
0
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END

Thanks
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