Cyclic (co)homology

Mohammad Hassanzadeh

University of New Brunswick

August 2012, IPM, Tehran

(Co)homology Theory

- Manifolds: de Rham, singular and Cech cohomology.

Assembling local data to extract global information.

- Group homology, Lie algebra homology and their relation with Hopf cyclic cohomology.

Cyclic cohomology

- Cyclic cohomology (of algebras) was discovered by Alain Connes no later than 1981.
- One of Connes main motivations to introduce cyclic cohomology theory came from index theory on foliated spaces.

Cocycle

$$
\text { cyclic cocycle }=\text { cohomology class }
$$

- cyclic cocycles have:
topological information
algebraic information geometric information

Cyclic Cocycle For Algebras

Definition

- $A=$ algebra.
- cyclic n-cocycle

$$
\begin{gathered}
\varphi: A \otimes \cdots \otimes A \longrightarrow \mathbb{C} \\
b \varphi=0, \quad \lambda \varphi=\varphi
\end{gathered}
$$

$$
(\lambda \varphi)\left(a_{0}, \cdots, a_{n}\right)=(-1)^{n} \varphi\left(a_{n}, a_{0}, \cdots, a_{n-1}\right)
$$

- $(b \varphi)\left(a_{0}, \cdots, a_{n}\right)=$

$$
\sum_{i=0}(-1)^{i} \varphi\left(a_{0}, \cdots, a_{i} a_{i+1} \cdots, a_{n}\right)+(-1)^{n+1} \varphi\left(a_{n} a_{0}, a_{1}, \cdots, a_{n-1}\right)
$$

Example, Even cocycles= Trace Maps

- $A=M_{n}(\mathbb{C})$.
- cyclic cocycle

$$
\begin{gathered}
\varphi_{2 n}: A^{\otimes(2 n+1)} \longrightarrow \mathbb{C} \\
\varphi_{2 n}\left(a_{0}, \cdots, a_{2 n}\right)=\operatorname{Tr}\left(a_{0} a_{1} \cdots a_{2 n}\right)
\end{gathered}
$$

Example: Cyclic Cocycle

- $M=$ closed (i.e. compact without boundary), smooth, oriented, n-manifold.
- $A=C^{\infty}(M)$: smooth complex valued functions.
- $f_{0}, \cdots, f_{n} \in A$.

$$
\begin{gathered}
\varphi: A \otimes \cdots \otimes A \longrightarrow \mathbb{C} \\
\varphi\left(f_{0}, \cdots, f_{n}\right)=\int_{M} f_{0} d f_{1} \wedge \cdots \wedge d f_{n}
\end{gathered}
$$

Previous Example

Properties of φ :

- φ continuous.
- φ Hochschild cocycle.
- φ cyclic

Continuity of φ

- φ continuous in Frechet space topology of A :

$$
f_{n} \longrightarrow f \Longleftrightarrow \partial_{\alpha} f_{n} \longrightarrow \partial_{\alpha} f
$$

Uniformly in a coordinate system.

φ is Hochschild Cocycle

$$
b \varphi=0
$$

$$
\begin{aligned}
& (b \varphi)\left(f_{0}, \cdots, f_{n+1}\right)= \\
& \sum(-1)^{i} \int_{M} f_{0} d f_{1} \cdots d\left(f_{i} f_{i+1}\right) \cdots d f_{n+1}+ \\
& (-1)^{n+1} \int_{M} f_{n+1} f_{0} d f_{1} \cdots d f_{n}= \\
& 0 .
\end{aligned}
$$

- Leibnitz rule, $d(f g)=f^{\prime} g+f g^{\prime}$.
- $d f \wedge d g=-d g \wedge d f$.

Cyclicity of φ

- φ is cyclic.

$$
\varphi\left(f_{n}, f_{0}, \cdots, f_{n-1}\right)=(-1)^{n} \varphi\left(f_{0}, \cdots, f_{n}\right)
$$

Cyclicity of φ

- φ is cyclic.

$$
\varphi\left(f_{n}, f_{0}, \cdots, f_{n-1}\right)=(-1)^{n} \varphi\left(f_{0}, \cdots, f_{n}\right)
$$

- Since

$$
\begin{aligned}
& \int_{M}\left(f_{n} d f_{0} \cdots d f_{n-1}-(-1)^{n} f_{0} d f_{1} \cdots d f_{n}\right)= \\
& \int_{M} d\left(f_{n} f_{0} d f_{1} \cdots d f_{n-1}\right)
\end{aligned}
$$

- Stokes formula

$$
\int_{M} d \omega=0
$$

$\omega=(n-1)$-form.

Example

cyclic cocycle \rightsquigarrow algebraic information

0 -Cocycles $=$ Trace Maps

- $A=$ Any algebra.
- All 0-cocycles:

$$
\begin{gathered}
\varphi: A \longrightarrow \mathbb{C} \\
\varphi(a b)=\varphi(b a)
\end{gathered}
$$

$$
\varphi=\text { Trace }
$$

Cyclic 1-Cocycle

- All Cyclic 1-Cocycles:

$$
\varphi: A \otimes A \longrightarrow \mathbb{C}
$$

- Satisfying following two conditions,

$$
\begin{gathered}
\varphi(a b, c)-\varphi(a, b c)+\varphi(c a, b)=0 \\
\varphi(b, a)=-\varphi(a, b)
\end{gathered}
$$

Example

cyclic cocycle \rightsquigarrow topological information

Winding Number And Cyclic 1-Cocycles

- $A=C^{\infty}\left(S^{1}\right)$.

$$
\varphi\left(f_{0}, f_{1}\right)=\frac{1}{2 \pi i} \int_{S^{1}} f_{0} d f_{1}
$$

- φ is 1-cyclic cocycle. (Already Shown)
- f invertible:

$$
\begin{gathered}
\varphi\left(f^{-1}, f\right)=\frac{1}{2 \pi i} \int_{S^{1}} f^{-1} d f=W(f, 0) \\
\text { Winding Number }
\end{gathered}
$$

Generalization Of Previous Example

- $\delta: A \longrightarrow A$ derivation; $\delta(a b)=\delta(a) b+a \delta(b)$.
- $\tau: A \longrightarrow \mathbb{C}$ invariant trace:

$$
\tau(a b)=\tau(b a), \quad \tau(\delta(a))=0
$$

Generalization Of Previous Example

- $\delta: A \longrightarrow A$ derivation; $\delta(a b)=\delta(a) b+a \delta(b)$.
- $\tau: A \longrightarrow \mathbb{C}$ invariant trace:

$$
\tau(a b)=\tau(b a), \quad \tau(\delta(a))=0
$$

- cyclic 1-cocycle

$$
\varphi\left(a_{0}, a_{1}\right)=\tau\left(a_{0} \delta\left(a_{1}\right)\right)
$$

- Generalizes

$$
\varphi\left(f_{0}, f_{1}\right)=\int_{S^{1}} f_{0} d f_{1}
$$

- $A=C^{\infty}\left(S^{1}\right), \delta=d, \tau=\int$.

Cyclic 2-cocycles Of Previous Example

- δ_{1}, δ_{2} derivations
τ-invariant
$\delta_{1} \delta_{2}=\delta_{2} \delta_{1}$
- cyclic 2-cocycle

$$
\varphi\left(a_{0}, a_{1}, a_{2}\right)=\tau\left(a_{0}\left(\delta_{1}\left(a_{1}\right) \delta_{1}\left(a_{1}\right)-\delta_{2}\left(a_{1}\right) \delta_{1}\left(a_{2}\right)\right)\right.
$$

Application, Noncommutative Torus

- $A=A_{\theta}=$ noncommutative torus. $\tau=$ standard trace.

$$
\delta_{1}(U)=U, \quad \delta_{1}(V)=0, \quad \delta_{2}(U)=0, \quad \delta_{2}(V)=V
$$

Example

- $A=C^{\infty}(M)$.
- $V \subseteq M=$ closed p-dimensional oriented submanifold.

$$
\varphi\left(f_{0}, \cdots, f_{p}\right)=\int_{V} f_{0} d f_{1} \cdots d f_{p}
$$

- φ is a cyclic p-cocycle.

More Examples: de Rham Homology

- A p-dimensional current C on M is a continuous map

$$
\Phi: \Omega^{p} M \longrightarrow \mathbb{C}
$$

- $C^{p}(M)=$ all p-currents on M

More Examples: de Rham Homology

- A p-dimensional current C on M is a continuous map

$$
\Phi: \Omega^{p} M \longrightarrow \mathbb{C}
$$

- $C^{P}(M)=$ all p-currents on M
-

$$
\begin{gathered}
\cdots \xrightarrow{d} C^{1}(M) \xrightarrow{d} C^{0}(M) \\
d \Phi(\omega)=\Phi(d \omega)
\end{gathered}
$$

- $d^{2}=0$.
- $H_{d} R^{*}(M)=$ de Rham homology

De Rham homology and cyclic cohomology

- $A=C^{\infty}(M)$.
- Φ is p -dimensional current on M.
- The $(p+1)$-linear functional

$$
\varphi_{\Phi}\left(f_{0}, \cdots, f_{p}\right)=\Phi\left(f_{0} d f_{1} \cdots d f_{p}\right)
$$

- φ_{Φ} Hochschild cocycle.
- Φ closed $\rightsquigarrow \varphi_{\phi}$ cycllic cocycle.

Closed: $\Phi(d \omega)=0, \omega \in \Omega^{p-1}(M)$.

- $\{$ closed de Rham p-currents on $M\} \rightsquigarrow\left\{\right.$ cyclic p-cocycles on $\left.C^{\infty}(M)\right\}$

Duality: De Rham homology and cyclic homology

- $\{$ closed de Rham p-currents on $M\} \hookleftarrow$ \{cyclic p-cocycles on $\left.C^{\infty}(M)\right\}$
- Exercise!

Theorem

de Rham homology $\rightsquigarrow \rightarrow$ cyclic cohomology $C^{\infty}(M)$

Topological cyclic homology(Connes-1985)

- $A=C^{\infty}(M)$
- Noncommutative Torus
- Other computations of cyclic cohomology. (Khalkhali-Rangipour , Kustermans-Rognes-Tuset and Hadfield-Krahmer)

Connes cyclic modules(1983)

- Connes defined the notion of a cyclic object in an abelian category and its cyclic cohomology.
- conceptualizing and generalizing cyclic cohomology far beyond its original inception. Motivation: cyclic cohomology of algebras as a derived functor.

Cosimplicial Module

Definition

A cosimplicial module ($C^{n}, \delta_{i}^{n}, s_{i}^{n}$), where, $C^{n}, n \geq 0 k$-modules with k-module maps $\delta_{i}^{n}: C^{n} \longrightarrow C^{n+1}$ cofaces, $s_{i}^{n}: C^{n} \longrightarrow C^{n-1}$ codegeneracies,

Cosimplicial Module

Definition

A cosimplicial module ($C^{n}, \delta_{i}^{n}, s_{i}^{n}$), where, $C^{n}, n \geq 0 k$-modules with k-module maps $\delta_{i}^{n}: C^{n} \longrightarrow C^{n+1}$ cofaces, $s_{i}^{n}: C^{n} \longrightarrow C^{n-1}$ codegeneracies,

$$
\begin{align*}
\delta_{j}^{n} \delta_{i}^{n-1} & =\delta_{i}^{n} \delta_{j-1}^{n-1} \quad \text { if } \quad i<j, \\
s_{j}^{n} s_{i}^{n+1} & =s_{i}^{n} s_{j+1}^{n+1} \quad \text { if } \quad i \leq j, \\
s_{j}^{n} \delta_{i}^{n+1} & =\left\{\begin{array}{lll}
\delta_{i}^{n} s_{j-1}^{n-1} & \text { if } & i<j \\
\text { id if } & & i=j \text { or } i=j+1 \\
\delta_{i-1}^{n} s_{j}^{n-1} & \text { if } & i>j+1
\end{array}\right. \tag{0.1}
\end{align*}
$$

(Co)cyclic Module

Definition

A cocyclic module $\left(C^{n}, \delta_{i}^{n}, s_{i}^{n}, \tau_{n}\right)$, where $\left(C^{n}, \delta_{i}^{n}, s_{i}^{n}\right)$ is cosimplicial module with $\tau_{n}: C^{n} \longrightarrow C^{n}$, called cocyclic map

(Co)cyclic Module

Definition

A cocyclic module $\left(C^{n}, \delta_{i}^{n}, s_{i}^{n}, \tau_{n}\right)$, where $\left(C^{n}, \delta_{i}^{n}, s_{i}^{n}\right)$ is cosimplicial module with $\tau_{n}: C^{n} \longrightarrow C^{n}$, called cocyclic map

$$
\begin{array}{rlrl}
\tau_{n} \delta_{i}^{n} & =\delta_{i-1}^{n} \tau_{n-1} & 1 \leq i \leq n \\
\tau_{n} \delta_{0}^{n} & =\delta_{n}^{n} & \\
\tau_{n} s_{i}^{n} & =s_{i-1}^{n} \tau_{n+1} & 1 \leq i \leq n \\
\tau_{n} s_{0}^{n} & =s_{n}^{n} \tau_{n+1}^{2} & \tag{0.2}\\
\tau_{n}^{n+1} & =\text { id. } &
\end{array}
$$

Example, A Cocylic Module for Unital Algebras

Let $C^{n}(A)=\operatorname{Hom}_{k}\left(A^{\otimes(n+1)}, k\right)$.

$$
\begin{gathered}
\delta_{i} \varphi\left(a_{0} \otimes \ldots \otimes a_{n}\right)= \begin{cases}\varphi\left(a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n}\right) & 0 \leq i<n \\
\varphi\left(a_{n} a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n-1}\right) & i=n\end{cases} \\
\sigma_{i} \varphi\left(a_{0} \otimes \ldots \otimes a_{n}\right)=\varphi\left(a_{0} \otimes \ldots \otimes a_{i} \otimes 1 \otimes a_{i+1} \otimes \ldots \otimes a_{n}\right), \quad 0 \leq i \leq n \\
\tau_{n} \varphi\left(a_{0} \otimes \ldots \otimes a_{n}\right)=\varphi\left(a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1}\right) .
\end{gathered}
$$

Hochschild Cohomology of a Cocyclic Module, $H H^{*}(C)$

Definition

$C=\left(C^{n}, \delta_{i}^{n}, s_{i}^{n}\right)=$ Cosimplicial module in a abelian category. The Hochschild cohomology, $H H^{*}(C)$

Hochschild Cohomology of a Cocyclic Module,

 $H H^{*}(C)$
Definition

$C=\left(C^{n}, \delta_{i}^{n}, s_{i}^{n}\right)=$ Cosimplicial module in a abelian category. The Hochschild cohomology, $H H^{*}(C)$

$$
C^{0} \xrightarrow{b} C^{1} \xrightarrow{b} C^{2} \xrightarrow{b} C^{3} \ldots,
$$

Hochschild Cohomology of a Cocyclic Module,

 $H H^{*}(C)$
Definition

$C=\left(C^{n}, \delta_{i}^{n}, s_{i}^{n}\right)=$ Cosimplicial module in a abelian category. The Hochschild cohomology, $H H^{*}(C)$

$$
C^{0} \xrightarrow{b} C^{1} \xrightarrow{b} C^{2} \xrightarrow{b} C^{3} \ldots,
$$

where $b: C^{n-1} \longrightarrow C^{n}$ is defined by

$$
b=\sum_{i=0}^{n}(-1)^{i} \delta_{i}^{n} \text {. }
$$

- $b^{2}=0$
- $H^{*}(C, b)=H H^{*}(C)=$ Hochschild cohomology of C.

Cyclic Cohomology of a Cocyclic Module, $H C^{*}(C)$

$C=\left(C^{n}, \delta_{i}^{n}, s_{i}^{n}, \tau_{n}\right)=$ Cocyclic module in abelian category,

Cyclic Cohomology of a Cocyclic Module, HC* (C)

$C=\left(C^{n}, \delta_{i}^{n}, s_{i}^{n}, \tau_{n}\right)=$ Cocyclic module in abelian category, (b, B)-bicomplex $\mathcal{B}^{* *}(C)$:

Cyclic Cohomology of a Cocyclic Module, $H C^{*}(C)$

$C=\left(C^{n}, \delta_{i}^{n}, s_{i}^{n}, \tau_{n}\right)=$ Cocyclic module in abelian category, (b, B)-bicomplex $\mathcal{B}^{* *}(C)$:

$$
\begin{aligned}
& C^{2} \xrightarrow{B} C^{1} \xrightarrow{B} C^{0} \\
& b \uparrow \\
& b \uparrow \\
& C^{1} \xrightarrow{B} C^{0} \\
& b \uparrow \\
& C^{0}
\end{aligned}
$$

where

$$
B=N s(1-\lambda) .
$$

where

$$
B=N s(1-\lambda) .
$$

where

$$
\begin{gathered}
\lambda_{n}=(-1)^{n} \tau_{n}, \\
N=1+\lambda+\lambda^{2}+\ldots+\lambda^{n} .
\end{gathered}
$$

where

$$
B=N s(1-\lambda) .
$$

where

$$
\begin{gathered}
\lambda_{n}=(-1)^{n} \tau_{n}, \\
N=1+\lambda+\lambda^{2}+\ldots+\lambda^{n} .
\end{gathered}
$$

and

$$
s=s_{n}^{n} \tau_{n+1}: C^{n+1} \rightarrow C^{n}
$$

where

$$
B=N s(1-\lambda) .
$$

where

$$
\begin{gathered}
\lambda_{n}=(-1)^{n} \tau_{n}, \\
N=1+\lambda+\lambda^{2}+\ldots+\lambda^{n} .
\end{gathered}
$$

and

$$
s=s_{n}^{n} \tau_{n+1}: C^{n+1} \rightarrow C^{n}
$$

$$
H C^{n}(C):=H^{n}\left(\operatorname{Tot} \mathcal{B}^{* *}(C)\right)
$$

Periodic Cyclic Cohomology of a Cocyclic Module,

 $H P^{*}(C)$The bicomplex, $\widehat{\mathcal{B}}^{* *}(C)$

$$
\begin{array}{cc}
\cdots \uparrow C^{4} \xrightarrow{B} C^{3} \xrightarrow{B} C^{2} \xrightarrow{B} C^{1} \xrightarrow{B} C^{0} \\
b \uparrow & b \uparrow
\end{array}
$$

$$
\cdots C^{3} \xrightarrow{B} C^{2} \xrightarrow{B} C^{1} \xrightarrow{B} C^{0}
$$

$$
b \uparrow \quad b \uparrow \quad b \uparrow
$$

$$
\cdots C^{2} \xrightarrow{B} C^{1} \xrightarrow{B} C^{0}
$$

$$
b \uparrow \quad b \uparrow
$$

$$
\cdots C^{1} \xrightarrow{B} C^{0}
$$

Thanks

